Understanding Surfactants: Classification and Applications


SURFACTANT AND ITS CLASSIFICATION

Surfactants are substances that reduce the surface tension (also called interfacial tension) between two liquids, a gas and a liquid, or a liquid and a solid. The term "surfactant" is an acronym for "surface active agents," which are compounds with dual hydrophilicity and hydrophobicity features. The name itself implies the surface activity of these classes of compounds and their propensity to adsorb at interfaces. The polar component, also known as the hydrophilic part or hydrophile, demonstrates a strong affinity for or attraction to polar solvents. The nonpolar portion is known as a hydrophobe or lipophile because it is attracted to oil. [1-5] Amphiphiles or tensides are other names for surfactants. More than 50 years ago, Paul Winsor was the first person to use the term "amphiphile." There are two Greek roots in it. Tensioactif is the name given to surfactant in French; tenside to it in German; and tensioactivo to it in Spanish. [6, 7]

Dispersa | “Breaking Down” Surfactants: What they are, how they work, and  their role in the pandemic

Figure 1



CLASSIFICATION  OF SURFACTANT


Surfactant are usually amphiphilic organic compound containing both hydrophobic group (their tails) and hydrophilic group (their head). Consequently, surfactant has both water soluble and water insoluble components. There are four groups of surfactant based on the presence and absence of charge or the type of charge on the head.



Shutterstock 1833914527.  Figure 2

Figure 2.

(1) Anionic Surfactant           

(2) Cationic Surfactant

(3) Amphoteric Surfactant 

(4) Non-ionic Surfactant 


                                

  1. Anionic Surfactant:


    Surfactants are often categorised using polar head groupings. Anionic surfactant has a net charge in its head. If the charge is negative, the surfactant is more specifically referred to as an anionic surfactant.

       The Anionic Surfactants have Sulphate, Sulfonate, Phosphate and carboxylate, containing negative charged functional groups.


Body washes, hand soaps, kitchen cleansers, and laundry detergents all contain anionic surfactants. They are the most common and functional surfactants. In terms of removing oily residue, they are the most efficient. But as the strongest surfactants, they also irritate the skin.


       Anionic surfactants, the most well-liked and frequently utilised type, are present in practically all cleaning supplies. According to estimates, anionic compounds account for 46% of the $46 billion worldwide surfactant market in 2015 [8].


Table No: 1. Sulphate type Anionic Surfactant





Table No. 2: Sulphonate type anionic Surfactant


SRUCTURE

CHEMICAL NAME

MOLECULAR FORMULA

Sodium pentanesulfonate

Sodium pentanesulfonate

C5H13NaO3S

BUTYLNAPHTHALENESULFONIC ACID SODIUM SALT

BUTYLNAPHTHALENESULFONIC ACID SODIUM SALT

C14H15NaO2S

4-Morpholineethanesulfonic acid

4-Morpholineethanesulfonic acid

C6H13NO4S

Sodium 1-butanesulfonate

Sodium 1-butanesulfonate

C4H9NaO3S

LIGNOSULFONIC ACID, CALCIUM SALT

C20H24CaO10S2

Sodium dodecylbenzenesulphonate

Sodium dodecylbenzenesulphonate

C18H29NaO3S

1-DODECANESULFONIC ACID SODIUM SALT

1-DODECANESULFONIC ACID SODIUM SALT

C12H25NaO3S

Sodium allylsulfonate

Sodium allylsulfonate

C3H5NaO3S

Sodium poly[(naphthaleneformaldehyde)sulfonate]

(C11H7O4SNa)n

1-HEXADECANESULFONIC ACID SODIUM SALT

1-HEXADECANESULFONIC ACID SODIUM SALT

C16H33NaO3S

Sodium lignosulfonate

C20H24Na2O10S2

Dodecylbenzenesulphonic acid

Dodecylbenzenesulphonic acid

C18H30O3S

CALCIUM DODECYLBENZENE SULFONATE

CALCIUM DODECYLBENZENE SULFONATE

C36H58CaO6S2

2-dodecylbenzenesulfonate

2-dodecylbenzenesulfonate

C18H29O3S-

SODIUM-N-METHYL-N-OLEYL TAURATE

SODIUM-N-METHYL-N-OLEYL TAURATE

C21H42NNaO4S

DODECYLBENZENESULFONIC ACID SODIUM SALT

DODECYLBENZENESULFONIC ACID SODIUM SALT

C18H29NaO3S

Sodium alkylbenzene sulfonate

RSO3Na(R=C10C13)

1-PENTANESULFONIC ACID SODIUM SALT MONOHYDRATE

1-PENTANESULFONIC ACID SODIUM SALT MONOHYDRATE

C5H11O3S.Na

2,6-DIMORPHOLIN-4-YLPYRIMIDINE-4-CARBOXYLIC ACID

2,6-DIMORPHOLIN-4-YLPYRIMIDINE-4-CARBOXYLIC ACID

C13H18N4O4

disodium methylenebisnaphthalenesulphonate

disodium methylenebisnaphthalenesulphonate

C21H14Na2O6S2

Disodium 4-dodecyl-2,4'-oxydibenzenesulfonate

Disodium 4-dodecyl-2,4'-oxydibenzenesulfonate

C24H32Na2O7S2

Sodium n-octylsufonate

Sodium n-octylsufonate

C8H17NaO3S

ammonium dodecylbenzenesulphonate

ammonium dodecylbenzenesulphonate

C18H33NO3S




Table No. 3: Carboxylate type anionic Surfactant


STRUCTURE

CHEMICAL NAME

MF

Sodium stearate

Sodium stearate

C18H35NaO2

Magnesium stearate

Magnesium stearate

C36H70MgO4

Potassium oleate

Potassium oleate

C18H33KO2

Hydroxyaluminum distearate

Hydroxyaluminum distearate

C36H71AlO5

Manganous stearate

Manganous stearate

C36H70MnO4

Dibasic Lead Stearate

C36H70O6Pb2







Table No. 4: Other anionic Surfactant


STRUCTURE

CHEMICAL NAME

MOLECUALR FORMULA

Decyltrimethylammonium chloride

Decyltrimethylammonium chloride

C13H30ClN

CETYLDIMETHYLETHYLAMMONIUM BROMIDE

CETYLDIMETHYLETHYLAMMONIUM BROMIDE

C20H44BrN

3-(N,N-Dimethylpalmitylammonio)propanesulfonate

3-(N,N-Dimethyl Palmitoyl Ammonio)propanesulfonate

C21H45NO3S

LY 171883

LY 171883

C16H22N4O3

Cleaner for heat-transfer oil furnace


Organosilicon surfactant


SULFONATED ALIPHATIC POLYESTER

SULFONATED ALIPHATIC POLYESTER

C20H39NaO7S

SURFACTANT

C13H27SO3NaC17H35SO3Na

Fluorocarbon surfactant


Silk softener

C21H41NaO7S

Lamepon A

C17H33CONHR(CONHr1)nCOONa

water-decreasing agent AF


sodium oleyl sarcosinate

sodium oleyl sarcosinate

C21H40NNaO2

antistatic finish agent for synthetic fiber


frothing agent K14

C1316H2733O4SNa

glyceryl ether carboxylic acid salt


calcium stearyl lactate

calcium stearyl lactate

C42H82CaO6

monoethanolamine dodecyl sulfate

monoethanolamine dodecyl sulfate

C14H33NO5S

amidoaminosurfactans


Jiuma plate amino-acid surfactant


cleaner LS

C25H40NO5SNa

sodium nonylphenol polyoxyethylene ether sulfate

C35H63NaO14S

fatty alcohol ammonium sulfate

C16H37NH4O4S

lauryl polyoxyethylene ether triethanolamine salt

C24H53NO16S

dodecyl phenyl ammonium sulfate

dodecyl phenyl ammonium sulfate

C18H33NO4S

sodium pyrrolidone carbonate

sodium pyrrolidone carbonate

C5H7NNa2O4

N-acyl glutamate potassium salt


sodium polyalkyl phenyl polyoxyethylene ether sulfate

sodium poly alkyl phenyl polyoxyethylene ether sulfate

H11N2O8PS

C^{12^} fatty alcohol polyoxyethylene ether ammonium sulfate

C18H41NO7S

stearyltoluene sodium sulfonate

stearyl toluene sodium sulfonate

C25H45NaO3S

sec-alkyl sodium sulfate

RCH(CH3)SO4Na

nonylphenyl polyoxyethylene ether sulfate triethanolamine


sopa


dispersing agent CNF

[C36H26Na2O6S2]n

alkoxy ethanolamido sulfosuccinate sodium salt


dodecay diethanol amine sulfate

C16H37NO6S

Levelling agent S

C17H13NaO3S

water-decreasing agent UNF-2


sodium dibenzyl amine enzene sulfonate

sodium dibenzyl amine benzene sulfonate

C33H34N2Na2O6S2





  1. Cationic Surfactant:


    Surfactants with a positively charged functional group are known as cationic surfactants. Cationic surfactants are made up of a polar and a non-polar component, much like any other surfactant.

. The most common applications for cationic surfactants, the bulk of which are quaternary ammonium compounds, include emulsifiers, corrosion inhibitors, rinse aids, antistatic agents, and fabric softeners (e.g., for asphalt).


     Cationic surfactants have been found in freshwater and marine environments and can persist in the environment, becoming a source of eco-toxicity. These contaminants have been linked to unintentional leaks, inadequate sewage treatment, and specific industrial applications, like antifouling coatings or remediating materials [9-13]. While there is still a shortage of information for seawater, the majority of the documented eco-toxicity studies have focused on the destiny and danger of cationic surfactants in freshwater ecosystems. [14-16]


Table No. 5:  Some Cationic Surfactant


Formula

Name

Alkyl Chain

https://www.lion-specialty-chem.co.jp/en/product/structure/image/s03/fig01.gif


Monoalkyl ammonium chloride


Coconut, Stearyl,

Tallow, Cetyl,

Behenyl

https://www.lion-specialty-chem.co.jp/en/product/structure/image/s03/fig02.gif

 


Dialkyl ammonium chloride

Decyl, Coconut, Vegetable based Stearyl, Hydrogenated Tallow

(RCOOCH2CH2)2—N+—(CH2CH2OH)(CH3)·CH3SO4

Ester cation

----

[R—NH3]+[CH3COO]-


Amine salts- Acetate


Coconut, Tallow, Hydrogenated Tallow

(CH3)4NH4+Cl-

Tetramethylammonium chloride

---

(CH3CH2) 4NH4+Cl-

Tetraethylammonium chloride

---

(CH3CH2CH2) 4NH4+OH-

Tetrapropylammonium hydroxide

---

(CH3CH2CH2) 4NH4+OH-

Tetrabutylammonium bromide

---

(CH3CH2CH2CH2) 4NH4+OH-

Tetrabutylammonium hydroxide

---

Phenyltrimethylammonium chloride CAS 138-24-9 | 808428

Trimethylphenylammonium chloride

---

Benzyltrimethylammonium chloride CAS 56-93-9 | 821961

Benzyltrimethylammonium chloride

---

Benzyltriethylammonium chloride 99 56-37-1

Benzyltriethylammonium chloride

---

Benzyltributylammonium chloride = 98 23616-79-7

Benzyltributylammonium chloride

---

--------

Tallow alkyl diamine
Dioleate

---

----------

Coconut alkyl diamine
Adipate

---


  

 


3. Amphoteric Surfactant


Amphoteric surfactants have lengthy hydrophobic hydrocarbon chains, hydrophilic centres that are both positively and negatively charged, and they are all joined by a spacer group. This kind of surfactant preserves overall charge neutrality. The number of methylene segments in the spacer, the positive and negative charged groups' relative positions, and the length of the hydrophobic hydrocarbon chain all affect the properties of amphoteric surfactants. The pH level of the solvent affects the ionic activity of amphoteric surfactants. They behave anionically at a higher pH and cationically below the isoelectric points. In the vicinity of the isoelectric point, they assume the shape of zwitterions. A distinction between pH-sensitive and pH-insensitive amphoteric surfactants is actually possible.Due to its precise molecular structure, this surfactant possesses a number of special qualities, including high water solubility, high surface activities, a wide isoelectric range, low critical micelle concentration (CMC), high foam stability, low toxicity, low irritating ness, excellent biodegradability, bioactivity, interface change, and more. Amphoteric surfactants have generated a great deal of interest in the scientific community for a wide range of applications, including cosmetics, chromatography, increased oil recovery, electrochemistry, nanoscience, polymer chemistry, and wastewater treatment.[17]


Table No. 7: Amino acid type amphoteric Surfactant


STRUCTURE

CHEMICAL NAME

MF

Sodium hydroxymethylglycinate

Sodium hydroxymethylglycinate

C3H6NNaO3




Table No. 8:  Betaine type Amphoteric Surfactant





4. Nonionic Surfactant


     A neutral surfactant is referred to as a nonionic surfactant. In other words, their hydrophilic end is uncharged. The ability of this chemical compound to effectively emulsify oils and remove organic soils is one of its key qualities. The cloud point, a special characteristic of this surfactant that determines when it begins to separate from the cleaning solution, is another distinctive feature.


     However, due to their mildness, nonionic surfactants are frequently used in a variety of settings. Ethoxylated amines, ethoxylated alcohol, ethoxylated and alkoxylated fatty acids, etc. are a few well-known examples of nonionic surfactants.




Table no.  9 polyol ester type non ionic surfactant



STRUCTURE

CHEMICAL NAME 

MF

POLYETHYLENE GLYCOL MONOOLEYL ETHER

POLYETHYLENE GLYCOL MONOOLEYL ETHER

C38H76O11

TRILAURIN

TRILAURIN

C39H74O6

Span 80

Span 80

C24H44O6

Polyethylene Glycol Monocetyl Ether

Polyethylene Glycol Monocetyl Ether

C56H114O21

Glycerol tristearate

Glycerol tristearate

C57H110O6

Sorbitan monopalmitate

Sorbitan monopalmitate

C22H42O6

TRIOLEIN

TRIOLEIN

C57H104O6

Span 20

Span 20

C18H34O6

Hydroxypropyl methyl cellulose

Hydroxypropyl methyl cellulose

C3H7O*

Tween 60

C64H126O26

Polysorbate 20

Polysorbate 20

C26H50O10

Polyoxyethylene stearate

Polyoxyethylene stearate

C34H70O9

Docosanamide

Docosanamide

C22H45NO

SORBITAN TRIOLEATE

SORBITAN TRIOLEATE

C60H108O8

Polyoxyethylene lauryl ether

Polyoxyethylene lauryl ether

C58H118O24

Glyceryl Monooleate

Glyceryl Monooleate

C21H40O4

Span 60

Span 60

C24H46O6

polysorbate 40

polysorbate 40

C12H18O11

Propyleneglycol alginate

(C9H14O70n

GLYCEROL MONOHYDROXYSTEARATE

GLYCEROL MONOHYDROXYSTEARATE

C21H42O5

Fatty acids, lanolin, isopropyl esters


ACETYLATED SUCROSE DISTEARATE

ACETYLATED SUCROSE DISTEARATE


dibenzyl biphenyl polyoxyethylene ether

C58H86O17

additive AC1210

C32H67O10

Poly(ethylene glycol) distearate

Poly(ethylene glycol) distearate

C19H40O4

PENTAERYTHRITOL TETRARICINOLEATE 10G [R]


Isooctadecanoic acid, ester with 1,2,3-propanetriol

Isooctadecanoic acid, ester with 1,2,3-propanetriol

C21H42O4

SUCROSE DISTEARATE

SUCROSE DISTEARATE

C48H90O13

SORBITAN TRISTEARATE

SORBITAN TRISTEARATE

C60H114O8

glycerine monostearate

glycerine monostearate

C21H42O4

Fatty alcohol polyoxyethylene ether N=3

C12H25O(CH2CH2O)3H

C^{12~18^} fatty alcohol polyoxyethylene (35) ether

C82~88H166~178O36

coconut oil alcohol acylamide


MONOMYRISTIN

MONOMYRISTIN

C17H34O4

ethylene glycol monostearate

ethylene glycol monostearate

C20H40O3

MONOCAPRYLIN

MONOCAPRYLIN

C11H22O4

glycerine monolaurate

glycerine monolaurate

C15H30O4

Hydroxyethyl Cellulose

C29H52O21

Glycerides, coco mono-


Fatty alcohol polyoxyethylene ether O-10

C32~38H66~78O11

DILAURIN

DILAURIN

C27H52O5

MONOMYRISTIN

MONOMYRISTIN

C17H34O4

Tween 80

C24H44O6

TRIDECETH-4


Tween 85

Tween 85

CH4

FATTY ACID METHYL ESTER MIX C8-C22


Trimethylolpropane t


SUCROSE COCOATE


CETYL LACTATE

CETYL LACTATE

C19H38O3

BRIJ(R) 76

BRIJ(R) 76

C20H42O2

Sucrose stearate

Sucrose stearate

C30H56O12

Pentaerythrityl tetrastearate

Pentaerythrityl tetrastearate

C77H148O8

Isopropyl myristate

Isopropyl myristate

C17H34O2

MONOLAURIN

MONOLAURIN

C15H30O4

Glycerides, lard mono-, acetates


1-Glyceryl caprate

1-Glyceryl caprate

C13H26O4

Peregal O-25

C62~68H126~138O26

Deemulsifier SP-169


Additive AC1815

C48H99NO15














Table No. 10 Alkanolamide type nonionic surfactant








Table No. 11: APG type nonionic surfactant





Table No.12 Alkoxylates Type nonionic Surfactant





Table No. 13 Fatty Acid Alkyl Esters Type nonionic Surfactant


 

STRUCTURE

CHEMICAL NAME

MF

MYRISTYL MYRISTATE

MYRISTYL MYRISTATE

C28H56O2

Isooctyl palmitate

Isooctyl palmitate

C24H48O2

DECYL OLEATE

DECYL OLEATE

C28H54O2

OleylOleate

C36H68O2



Reference


[1] K. Shinoda, Solvent Properties of Surfactant Solutions, Dekker, New York, 1967. 

[2] H. E. Garret, Surface Active Chemicals, Pergamon, New York, 1975. 

[3] M. J. Rosen, Surfactants and Interfacial Phenomena, Wiley, New York, 1978. 

[4] A.T. Florence, D. Attwood, Surfactants Systems, Chapman and Hall   London, 1983. 

[5] Th. F. Tadros, Surfactants, Academic, New York 1984

[6] A.  M.  Schwartz, J.  W.  Perry, Surface Active Agents; their Chemists, Technology, R.E. Krieger, New York, (1978). 

[7] Schwartz A.M., Perry J.W., Berch J., "Surface Active Agents and Detergents Volume II" R. Krieger Pub. Co., New York (1977).

[8]. Grand View Research, Inc. (2015). Surfactants Market Analysis by Product, by Application, and Segment Forecasts to 2022. www.grandviewresearch.com

[9]. B. Biswas, L.N. Warr, E.F. Hilder, N. Goswami, M.M. Rahman, J.G. Churchman, K. Vasilev, G. P  an, R. Naidu, “Biocompatible functionalization of nanoclays for improved environmental remediation” Chem. Soc. Rev., 48 (2019), pp. 3740-3770, 10.1039/C8CS01019F.

[10]J. Figueiredo, T. Oliveira, V. Ferreira, A. Sushkova, S. Silva, D. Carneiro, D. Cardoso, S. Goncalves, F. Maia, C. Rocha, J. Tedim, S. Loureiro, R. Martins, “Toxicity of innovative anti-fouling nano-based solutions in marine species”Environ. Sci. Nano (2019), 10.1039/C5EN00098J 

[11] E. Olkowska, M. Ruman, Ż. Polkowska, “Occurrence of surface active agents in the environment”,J. Anal. Methods Chem., 2014 (2014), pp. 1-15, 10.1155/2014/769708

[12] R. Piola, C. Grandison, “Assessments of quaternary ammonium compounds (QAC) for in-water treatment of mussel fouling in vessel internals and sea chests using an experimental seawater pipework system”,Biofouling, 33 (2017), pp. 59-74, 10.1080/08927014.2016.1261287

[13] X. Wang, J. Che, M. Wu, Y. Shi, M. Li, J. Shan, L. Liu, “The anti-fouling effect of surfactants and its application for electrochemical detection of bisphenol A.” J Electrochem. Soc. Interface, 165 (2018), pp. B814-B823, 10.1149/2.0401816jes

[14] M.T. Garcia, O. Kaczerewska, I. Ribosa, B. Brycki, P. Materna, M. Drgas, “Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: effect of the spacer on their ecological properties,” Chemosphere, 154 (2016), pp. 155-160, 10.1016/j.chemosphere.2016.03.109

[15] M.T. Garcia, I. Ribosa, I. Kowalczyk, M. Pakiet, B. Brycki, “Biodegradability and aquatic toxicity of new cleavable betainate cationic oligomeric surfactants”J. Hazard. Mater., 371 (2019), pp. 108-114, 10.1016/j.jhazmat.2019.03.005

[16] O. Kaczerewska, B. Brycki, I. Ribosa, F. Comelles, M.T. Garcia, “Cationic gemini surfactants containing an O-substituted spacer and hydroxyethyl moiety in the polar heads: self-assembly, biodegradability and aquatic toxicity”, J. Ind. Eng. Chem., 59 (2018), pp. 141-148, 10.1016/j.jiec.2017.10.018

[17]. Ratan Sarkar,Aniruddha Pal,Atanu Rakshit,Bidyut Saha, “Properties and applications of amphoteric surfactant: A concise review”,Journal of Surfactant and Detergent: 22 July 2021,https://doi.org/10.1002/jsde.12542



Comments

Post a Comment

Popular posts from this blog

Understanding Chemical Oxygen Demand (COD) in Wastewater: Importance, Analysis, and Environmental Impact

Understanding Redox Reactions: The Dance of Electrons

The Atomic Playground - Knowledge about Atom Structure